FLUIDS AND FLOWS

Julia Yeomans: Fluids all around us

Ramin Golestanian: The bacterial viewpoint

Michael Barnes: Turbulence

The Navier-Stokes equation

$$\rho\{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\} = -\nabla p + \eta \nabla^2 \mathbf{u}$$

 $\rho\{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\} = -\nabla p + \eta \nabla^2 \mathbf{u}$

Computational fluid dynamics: a success story

High Reynolds numbers

 $Re = \frac{LU}{\nu}$

Low Reynolds numbers

 $Re = \frac{LU}{\nu}$

Goldstein group, Cambridge

A day in the life of a fluid dynamicist

https://gfm.aps.org/meetings/dfd-2015/55ec9a5d69702d060d570100

- 1. Superhydrophobic surfaces
- 2. Pancake bouncing
- 3. Vorticity

Nottingham Trent University

soft matter group Nottingham Trent University

Davide Quere, Mathilde Reyssat

Lubricant impregnated slippery surface

- 1. Superhydrophobic surfaces
- 2. Pancake bouncing
- 3. Vorticity

Weber number

balancing inertia and surface tension

$$We = \frac{r_0 v_0^2 \rho}{\gamma}$$

We=12

spreading time

 $t_{max} \sim \sqrt{\frac{\rho r_0^3}{\gamma}}$

independent of impact velocity

Impact on tapered posts

Normal bouncing on a superhydrophobic surface: very little friction so drops spread, retract and then bounce

Pancake bouncing: drop spreads, and then jumps as a pancake without retracting

Impact on tapered posts: experiments

Estimating the timescales: tapered posts

$$F \sim -2\pi R\gamma \cos\theta_Y n \qquad R = \beta z$$

capillary force proportional to distance from surface so simple harmonic motion

$$t_{\uparrow} \sim \sqrt{\frac{w^2 r_0 \rho}{\beta \gamma \cos \theta_Y}}$$

lateral spreading approx simple harmonic motion

$$t_{max} \sim \sqrt{\frac{\rho}{\gamma} r_0^3}$$

Why has pancake bouncing not been seen before?

Tina Hecksher Balloons on Nails: a 2nd semester project at Roskilde University

Tina Hecksher Balloons on Nails: a 2nd semester project at Roskilde University, Denmark

- 1. Superhydrophobic surfaces
- 2. Pancake bouncing
- 3. Vorticity

http://www.wimp.com/extraordinary-toroidal-vortices-produced-by-dolphins-humpback-whales-and-volcanoes/

Kutta-Joukovski theorem

$$\begin{split} L &= -\rho u_0 \Gamma. \\ \text{lift} & \text{circulation} \\ \Gamma &= \oint_{C(t)} \mathbf{u} \cdot d\boldsymbol{\ell} \end{split}$$

Kutta-Joukovski theorem

$\rho\{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\} = -\nabla p + \eta \nabla^2 \mathbf{u}$

